skip to main content


Search for: All records

Creators/Authors contains: "Trotter, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    By modelling how the probability distributions of individuals’ states evolve as new information flows through a network, belief propagation has broad applicability ranging from image correction to virus propagation to even social networks. Yet, its scant implementations confine themselves largely to the realm of small Bayesian networks. Applications of the algorithm to graphs of large scale are thus unfortunately out of reach. To promote its broad acceptance, we enable belief propagation for both small and large scale graphs utilizing GPU processing. We therefore explore a host of optimizations including a new simple yet extensible input format enabling belief propagation to operate at massive scale, along with significant workload processing updates and meticulous memory management to enable our implementation to outperform prior works in terms of raw execution time and input size on a single machine. Utilizing a suite of parallelization technologies and techniques against a diverse set of graphs, we demonstrate that our implementations can efficiently process even massive networks, achieving up to nearly 121x speedups versus our control yet optimized single threaded implementations while supporting graphs of over ten million nodes in size in contrast to previous works’ support for thousands of nodes using CPU-based multi-core and host solutions. To assist in choosing the optimal implementation for a given graph, we provide a promising method utilizing a random forest classifier and graph metadata with a nearly 95% F1-score from our initial benchmarking and is portable to different GPU architectures to achieve over an F1-score of over 72% accuracy and a speedup of nearly 183x versus our control running in this new environment. 
    more » « less